Part 14: Education

Web-based Integrated 2010 & 2015 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Key Words: cardiopulmonary resuscitation

1 Highlights & Introduction

1.1 Highlights

Despite significant scientific advances in the care of cardiac arrest victims, there remains considerable variability in survival rates that cannot be attributed to patient characteristics alone. To optimize the likelihood that cardiac arrest victims receive the highest-quality evidence-based care, resuscitation education must use sound educational principles supported by empirical educational research to translate scientific knowledge into practice. While the 2010 AHA education guidelines included implementation and teams in its recommendations, the 2015 AHA education guidelines now focus strictly on education, with implementation and teams being included in other parts of the 2015 Guidelines Update.

Summary of Key Issues and Major Changes

Key recommendations and points of emphasis include the following:

- Use of a CPR feedback device is recommended to assist in learning the psychomotor skill of CPR. Devices that provide corrective feedback on performance are preferred over devices that provide only prompts (such as a metronome).
- The use of high-fidelity manikins is encouraged for programs that have the infrastructure, trained personnel, and resources to maintain the program. Standard manikins continue to be an appropriate choice for organizations that do not have this capacity.
- BLS skills seem to be learned as easily through self-instruction (video or computer based) with hands-on practice as through traditional instructor-led courses.
- Although prior CPR training is not essential for potential rescuers to initiate CPR, training helps people to learn the skills and develop the confidence to provide CPR when encountering a cardiac arrest victim.
- To minimize the time to defibrillation for cardiac arrest victims, the deployment of an AED should not be limited to trained individuals (although training is still recommended).
- A combination of self-instruction and instructor-led courses with hands-on training can be considered as an alternative to traditional instructor-led courses for lay providers.
- Precourse preparation that includes review of appropriate content information, online/precourse testing, and/or practice of pertinent technical skills may optimize learning from adult and pediatric advanced life support courses.
- Given the importance of team dynamics in resuscitation, training with a focus on leadership and teamwork principles should be incorporated into advanced life support courses.
- Communities may consider training bystanders in compression-only CPR for adult OHCA as an alternative to training in conventional CPR.
- Two-year retraining cycles are not optimal. More-frequent training of basic and advanced life support skills may be helpful for providers who are likely to encounter a cardiac arrest.

The 2015 AHA ECC Education Guidelines Writing Group agreed on several core concepts to guide the development of courses and course materials (Table 3).

CPR Feedback Devices

2015 (Updated): Use of feedback devices can be effective in improving CPR performance during training.

2015 (New): If feedback devices are not available, auditory guidance (eg, metronome, music) may be considered to improve adherence to recommendations for chest compression rate.

2010 (Old): The use of a CPR feedback device can be effective for training.
Why: New evidence differentiates the benefit of different types of feedback for training, with a slight advantage given to feedback that is more comprehensive.

Use of High-Fidelity Manikins

2015 (Updated): The use of high-fidelity manikins for advanced life support training can be beneficial for improving skills performance at course conclusion.

2010 (Old): Realistic manikins may be useful for integrating the knowledge, skills, and behaviors in advanced life support training.

Why: In the 2010 evidence review, there was insufficient evidence to recommend the routine use of more realistic manikins to improve skills performance in actual resuscitations, particularly given the additional costs and resources required. Considering both the potential benefit of having more realistic manikins as well as the increased costs and resources involved, newly published literature supports the use of high-fidelity manikins, particularly in programs where resources (eg, human and financial resources) are already in place.

Blended Learning Formats

2015 (Updated): CPR self-instruction through video and/or computer-based modules with hands-on practice may be a reasonable alternative to instructor-led courses.

2015 (New): It may be reasonable to use alternative instructional modalities for basic and advanced life support teaching in resource-limited environments.

2010 (Old): Short video instruction combined with synchronous hands-on practice is an effective alternative to instructor-led BLS courses.

Why: Learner outcomes are more important than course formats. Knowledge and skill acquisition and retention and, ultimately, clinical performance and patient outcome should guide resuscitation education. There is new evidence that specific formats, such as CPR self-instruction using video or computer-based modules, can provide similar outcomes to instructor-led courses. The ability to effectively use alternative course formats is particularly important in resource-limited environments where instructor-led courses may be cost prohibitive. Self-instruction courses offer the opportunity to train many more individuals to provide CPR while reducing the cost and resources required for training—important factors when considering the vast population of potential rescuers that should be trained.

Targeted Training

2015 (New): Training primary caregivers and/or family members of high-risk patients may be reasonable.

Why: Studies consistently show high scores for CPR performance by trained family members and/or caregivers of high-risk cardiac patients as compared with those who were untrained.

Expanded Training for AEDs

2015 (Updated): A combination of self-instruction and instructor-led teaching with hands-on training can be considered as an alternative to traditional instructor-led courses for lay providers. If instructor-led training is not available, self-directed training may be considered for lay providers learning AED skills.

2015 (New): Self-directed methods can be considered for healthcare professionals learning AED skills.

2010 (Old): Because even minimal training in AED use has been shown to improve performance in simulated cardiac arrests, training opportunities should be made available and promoted for lay rescuers.

Why: AEDs can be correctly operated without any prior training: There is no need for a requirement for training to be placed on the use of AEDs by the public. Nevertheless, even minimal training improves performance, timeliness, and efficacy. Self-directed training broadens the opportunities for training for both lay providers and healthcare professionals.
Teamwork and Leadership

2015 (Updated): Given the very small risk for harm and the potential benefit of team and leadership training, the inclusion of team and leadership training as part of advanced life support training is reasonable.

2010 (Old): Teamwork and leadership skills training should be included in advanced life support courses.

Why: Resuscitation is a complex process that often involves the cooperation of many individuals. Teamwork and leadership are important components of effective resuscitation. Despite the importance of these factors, there is limited evidence that teamwork and leadership training affects patient outcomes.

Compression-Only CPR

2015 (New): Communities may consider training bystanders in compression-only CPR for adult OHCA as an alternative to training in conventional CPR.

Why: Compression-only CPR is simpler for lay providers to learn than conventional CPR (compressions with breaths) and can even be coached by a dispatcher during an emergency. Studies performed after a statewide educational campaign for bystander compression-only CPR showed that the prevalence of both overall CPR and compression-only CPR by bystanders increased.

BLS Retraining Intervals

2015 (Updated): Given the rapidity with which BLS skills decay after training, coupled with the observed improvement in skill and confidence among students who train more frequently, it may be reasonable for BLS retraining to be completed more frequently by individuals who are likely to encounter cardiac arrest.

2015 (New): Given the potential educational benefits of short, frequent retraining sessions coupled with the potential for cost savings from reduced training time and removal of staff from clinical environment for standard refresher training, it is reasonable that individuals who are likely to encounter a cardiac arrest victim perform more frequent manikin-based retraining. There is insufficient evidence to recommend the optimal time interval.

2010 (Old): Skill performance should be assessed during the 2-year certification with reinforcement provided as needed.

Why: While growing evidence continues to show that recertification in basic and advanced life support every 2 years is inadequate for most people, the optimal timing of retraining has not been determined. Factors that affect the optimal retraining interval include the quality of initial training, the fact that some skills may be more likely to decay than others, and the frequency with which skills are used in clinical practice. Although data are limited, there is an observed improvement in skills and confidence among students who train more frequently. Also, frequent refreshers with manikin-based simulation may provide cost savings by using less total retraining time as compared with standard retraining intervals.

1.2 Introduction - Updated

These Web-based Integrated Guidelines incorporate the relevant recommendations from 2010 and the new or updated recommendations from 2015.

Cardiac arrest is a major public health issue, with more than 500 000 deaths of children and adults per year in the United States. Despite significant scientific advances in the care of cardiac arrest victims, there remain striking disparities in survival rates for both out-of-hospital and in-hospital cardiac arrest. Survival can vary among geographic regions by as much as 6-fold for victims in the prehospital setting. Significant variability in survival outcomes also exists for cardiac arrest victims in the hospital setting, particularly when the time of day or the location of the cardiac arrest is considered. Inconsistencies in performance of both healthcare professionals and the systems in which they work likely contribute to these differences in outcome.
For out-of-hospital cardiac arrest victims, the key determinants of survival are the timely performance of bystander cardiopulmonary resuscitation (CPR) and defibrillation for those in ventricular fibrillation or pulseless ventricular tachycardia. Only a minority of cardiac arrest victims receive potentially lifesaving bystander CPR, thus indicating room for improvement from a systems and educational point of view. For in-hospital cardiac arrest, the important provider-dependent determinants of survival are early defibrillation for shockable rhythms and high-quality CPR, along with recognition and response to deteriorating patients before an arrest.

Defining the optimal means of delivering resuscitation education to address these critical determinants of survival may help to improve outcomes from cardiac arrest.

Resuscitation education is primarily focused on ensuring widespread and uniform implementation of the science of resuscitation (eg, the Scientific Statements and Guidelines) into practice by lay and healthcare CPR providers. It aims to close the gap between actual and desired performance by providing lay providers with CPR skills and the self-efficacy to use them; supplementing training with in-the-moment support, such as dispatch-assisted CPR; improving healthcare professionals’ ability to recognize and respond to patients at risk of cardiac arrest; improving resuscitation performance (including CPR); and ensuring continuous quality improvement activities to optimize future performance through targeted education. Simply ensuring that cardiac arrest victims receive care consistent with the current state of scientific knowledge has the potential to save thousands of lives every year in the United States.

1.3 Development of the Evidence-Based Education Guidelines - Updated

The American Heart Association (AHA) Emergency Cardiovascular Care (ECC) Committee uses a rigorous process to review and analyze the peer-reviewed published scientific evidence supporting the AHA Guidelines for CPR and ECC, including the 2015 update. In 2000, the AHA began collaborating with other resuscitation councils throughout the world, via the International Liaison Committee on Resuscitation (ILCOR), in a formal international process to evaluate resuscitation science. This process resulted in the publication of the International Consensus on CPR and ECC Science With Treatment Recommendations in 2005 and in 2010. These publications provided the scientific support for AHA Guidelines revisions in those years.

In 2011, the AHA created an online evidence review process, the Scientific Evidence Evaluation and Review System (SEERS), to support ILCOR systematic reviews for 2015 and beyond. This new process includes the use of Grading of Recommendations Assessment, Development, and Evaluation (GRADE) software to create systematic reviews that will be available online and used by resuscitation councils to develop their guidelines for CPR and ECC. The drafts of the online reviews were posted for public comment, and ongoing reviews will be accessible to the public.

Throughout the online version of this publication, live links are provided so the reader can connect directly to the systematic reviews on the SEERS website. These links are indicated by a combination of letters and numbers (eg, EIT 647). We encourage readers to use the links and review the evidence and appendixes, such as the GRADE tables.

For the 2015 international evidence review, members of the ILCOR Education, Implementation, and Teams Task Force identified topics through consensus, based on their perceived relevance, potential impact on saving lives, and the likelihood for new evidence since the 2010 Guidelines. They also sought recommendations about topics from ILCOR member resuscitation councils through their council chairs and individual task force members. The systematic reviews of these high-priority topics provided the evidence base for these 2015 education guidelines.

Each review seeks to determine the answer to a question regarding the effect in a population of an intervention (evaluated against a control or other comparison group) on an outcome. The Education, Implementation, and Teams Task Force identified patient-related outcomes and actual performance in the clinical setting as the critical outcomes, with learning-related outcomes (immediate and longer retention) considered to be important outcomes. This approach is consistent with other recognized program evaluation paradigms, such as Kirkpatrick’s model, where “results” (or patient outcome) are considered more important than “transfer” of learning to the clinical setting, which is in turn more important than evidence of “learning.” McGaghie’s model describing translational outcomes for medical education research follows a similar logic. The implication is that treatment recommendations based strictly on studies demonstrating improved learning will be weaker than if differences in critical patient related outcomes are demonstrated.
These Web-based Integrated Guidelines incorporate the relevant recommendations from 2010 and the new or updated recommendations from 2015.

As with all AHA Guidelines, each 2015 recommendation is labeled with a Class of Recommendation (COR) and a Level of Evidence (LOE). The updated 2015 recommendations use the newest AHA COR and LOE classification system, which contains modifications of the Class III recommendation and introduces LOE B-R (randomized studies) and B-NR (nonrandomized studies) as well as LOE C-LD (limited data) and C-EO (expert opinion/consensus). For further information, please see “Part 2: Evidence Evaluation and Management of Conflicts of Interest.”

These 2015 AHA education guidelines differ from the 2010 AHA Guidelines on education, implementation, and teams because the focus of this publication is strictly on training, with important related topics covered in other Parts (eg, dispatch-guided CPR in “Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality” and continuous quality improvement in “Part 4: Systems of Care and Continuous Quality Improvement”).

Key recommendations in the 2015 update to the 2010 Guidelines include the following:

- Use of high-fidelity manikins is encouraged at training centers and organizations that have the infrastructure, trained personnel, and resources to maintain the program.
- Use of CPR feedback devices can help to learn the psychomotor skill of CPR.
- Two-year retraining cycles are not optimal. More frequent training in basic life support (BLS) and retraining in advanced life support (ALS) may be helpful for providers who are likely to encounter a cardiac arrest.

2 Willingness to Perform

Without immediate initiation of CPR, most victims of cardiac arrest will die. Bystander CPR can significantly improve survival rates from cardiac arrest, but evidence indicates that only 15% to 30% of victims of out-of-hospital arrest receive CPR before EMS arrival. Strategies to increase the incidence of bystander-initiated CPR and the use of automated external defibrillators (AEDs) are addressed in this section.

2.1 Barriers to Bystander CPR

Commonly cited reasons for reluctance to perform lifesaving maneuvers include concern for injuring the victim, fear of performing CPR incorrectly, physical limitations, fear of liability, fear of infection, or victim characteristics. Opportunities exist to overcome many of these barriers through education and encouragement to perform when the bystander is faced with a victim in cardiac arrest.

In a study of actual bystanders interviewed following a 911 call in which the EMS dispatcher encouraged performance of CPR, nonresponders most frequently cited panic (37.5%) and fear of hurting the patient (9.1%) as the reasons they were unable to perform. In 2 studies reviewing actual emergencies, bystanders encountered practical and understandable barriers to performance (eg, physical limitations, inability to listen to instructions and perform skills at the same time, and system delays) more often than panic or stress, although both were important factors.

Because panic can significantly impair a bystander’s ability to perform in an emergency, it may be reasonable for CPR training to address the possibility of panic and encourage learners to consider how they will overcome it. (Class IIb LOE C)

Actual bystanders and surveys of the general public report that people more recently trained in CPR techniques expressed greater willingness to attempt resuscitation than those without recent training. Short, self-directed video instruction is an effective and cost-efficient strategy for training rescuers.

Fear of harming the victim or fear of personal harm (i.e. infection or injury) may reduce willingness to undertake basic life support training or to perform CPR. However infection resulting from CPR performance is extremely rare and limited to a few case reports. Educating the public about the low risks to the rescuer and victim may increase willingness to perform CPR.
Some rescuers, including healthcare providers, may be more likely to initiate CPR if they have access to barrier devices.

Despite the low risk of infections, it is reasonable to teach rescuers about the use of barrier devices emphasizing that CPR should not be delayed for their use. (Class Ila, LOE C)

Rescuers who are not willing to perform mouth-to-mouth ventilations may be willing to perform Hands-Only (chest compression-only) CPR.17, 21, 22, 25, 31, 33, 57-59

CPR training programs should teach compression-only CPR as an alternative to conventional CPR for rescuers when they are unwilling or unable to provide conventional CPR. (Class I, LOE B)

2.2 Barriers to Recognition of Cardiac Arrest

Victims of out-of-hospital cardiac arrest who are gasping have a higher survival rate compared to victims who are not gasping.60 Gasping is commonly misinterpreted as a sign of life that may prevent rescuers from initiating resuscitation. Potential rescuers can be taught to recognize gasping and initiate CPR.61

Rescuers should be taught to initiate CPR if the adult victim is unresponsive and is not breathing or not breathing normally (eg, only gasping). (Class I, LOE B)

Dispatcher telephone instructions and support has been shown to increase willingness to perform CPR.28, 62, 63

Because dispatcher CPR instructions substantially increase the likelihood of bystander CPR performance and improve survival from cardiac arrest, all dispatchers should be appropriately trained to provide telephone CPR instructions.54-70 (Class I, LOE B)

2.3 Barriers to AED Use

Some rescuers may be intimidated by the idea of delivering a shock, but AEDs are safe,71, 72 and adverse events are rare, 73, 74-78 Although AEDs can be used effectively with no prior training, even brief training increases the willingness of a bystander to use an AED and improves his or her performance.79-81

To maximize willingness to use an AED, public-access defibrillation training should continue to be encouraged for the lay public. (Class I, LOE B)

In summary, although the factors influencing willingness to perform CPR are myriad, many obstacles can be overcome with education. Although the precise number of trained volunteers needed to optimize the chance that a specific victim will receive CPR is not known, it is reasonable to assume that maximizing the number of people trained in a community and providing instructions and encouragement at the time an event occurs will improve the odds that a bystander will engage in resuscitation efforts.

For more information about automated external defibrillator training, please refer to section 4.2 of this document: Automated External Defibrillator (AED) Training Methods.

3 Educational Design - Updated

Evidence-based instructional design is essential to improve training of providers and ultimately improve resuscitation performance and patient outcomes. The quality of rescuer performance depends on learners integrating, retaining, and applying the cognitive, behavioral, and psychomotor skills required to perform resuscitation successfully. Learners need to develop the self-efficacy to use the skills they learned when faced with a resuscitation scenario.82, 83 Well-designed resuscitation education informed by adult learning theories and educational science increases the likelihood that this will occur. The appropriate application of learning
Theories combined with research into program effectiveness has resulted in substantial changes to AHA ECC courses over the past quarter century. In 2013, the AHA established the ECC Educational Sciences and Programs Subcommittee to help inform the creation of courses by using the best available evidence in education science. The development of the AHA courses are guided by core educational principles (Table 1), including deliberate, hands-on practice, where feedback and debriefing should support participants’ development toward mastery.

Consistent with established methodologies for program evaluation, the effectiveness of resuscitation courses should be evaluated. (Class I, LOE C)

Table 1: 2015 - Core AHA Emergency Cardiovascular Care Educational Concepts

<table>
<thead>
<tr>
<th>Core AHA Emergency Cardiovascular Care Educational Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Simplification</strong></td>
</tr>
<tr>
<td>Course content should be simplified in both the presentation of the content and the breadth of content to facilitate accomplishment of course objectives. [reference id=&quot;2166&quot; range=&quot;&quot; ]</td>
</tr>
</tbody>
</table>

| **Consistency**                                           |
| Course content and skill demonstrations should be presented in a consistent manner. Video-mediated, practice-while-watching instruction is the preferred method for basic psychomotor skill training because it reduces instructor variability that deviates from the intended course agenda. [reference id="2167,2168,2169,2170" range="4" ] |

| **Contextual**                                           |
| Adult learning principles [reference id="2171" range="" ] should be applied to all ECC courses, with emphasis on creating relevant training scenarios that can be applied practically to the learners’ real-world setting, such as having hospital-based learners practice CPR on a bed instead of the floor. |

| **Hands-on practice**                                    |
| Substantial hands-on practice is needed to meet psychomotor and nontechnical/leadership skill performance objectives. [reference id="2167" range="" ] |

<p>| <strong>Practice to mastery</strong>                                   |
| Learners should have opportunities for repetitive performance of key skills coupled with rigorous assessment and informative feedback in a controlled setting. [reference id=&quot;2175,2176,2177,2178&quot; range=&quot;4&quot; ] This deliberate practice should be based on clearly defined objectives [reference id=&quot;2179,2180,2181&quot; range=&quot;3&quot; ] and not time spent, to promote student development toward mastery. [reference id=&quot;2182,2183,2184,2185,2186&quot; range=&quot;5&quot; ] |</p>
<table>
<thead>
<tr>
<th>Debriefing</th>
<th>The provision of feedback and/or debriefing is a critical component of experiential learning. Feedback and debriefing after skills practice and simulations allow learners (and groups of learners) the opportunity to reflect on their performance and to receive structured feedback on how to improve their performance in the future.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment</td>
<td>Assessment of learning in resuscitation courses serves to both ensure achievement of competence and provide the benchmarks that students will strive toward. Assessment also provides the basis for student feedback (assessment for learning). Assessment strategies should evaluate competence and promote learning. Learning objectives must be clear and measurable and serve as the basis of evaluation.</td>
</tr>
<tr>
<td>Course/program evaluation</td>
<td>This is an integral component of resuscitation education, with the appraisal of resuscitation courses including learner, individual instructor, course, and program performance. Training organizations should use this information to drive the continuous quality improvement process.</td>
</tr>
</tbody>
</table>

AHA indicates American Heart Association; CPR, cardiopulmonary resuscitation; and ECC, emergency cardiovascular care.

An essential component of resuscitation education is the experiential learning that occurs through simulation and the associated debriefing. Kolb’s experiential learning cycle provides a framework of 4 stages that are required to consolidate learning (Figure 1). For most individuals participating in resuscitation courses, clinical resuscitations are rare events, emphasizing the importance of learning from simulated scenarios so that they are able to act when the real-life events occur. By engaging learners in scenarios and guiding them through a constructive debriefing, instructors can maximize knowledge transfer to real-life events. Critical to this learning process is the notion that the experience is not enough to promote practice change. Experience needs to be coupled with a constructive debriefing, allowing for guided reflection that can promote change in performance. AHA courses promote the use of structured and supported debriefing by using the GAS (gather-analyze-summarize) model of debriefing paired with evidence-based scripted debriefing tools.
As a part of this educational process, attention to functional task alignment is necessary to ensure that learners take away the appropriate skills. By aligning the nature and degree of realism with the predetermined learning objectives and/or tasks, the instructor is deliberately targeting realism to the learning need. Taking shortcuts within the educational design of these courses can result in significant unintended consequences. As an example, a study by Krogh et al demonstrated poor adherence to the recommended 2-minute CPR time cycles when learners practiced CPR with abbreviated cycles. Greater attention to promoting realism of the simulation scenario with respect to timing, duration, and integration of tasks with accompanying feedback creates a learning environment best suited to improving learning outcomes.

To quote the legendary coach Vince Lombardi, “Practice doesn’t make perfect. Only perfect practice makes perfect.”

There is substantial evidence to suggest that mastery learning is the key to skill retention and the prevention of rapid decay in skills and knowledge after simulation-based learning. The goal of mastery learning is to have learners achieve the highest standards for all educational outcomes instead of simply meeting the minimum standard. Although this is not a new educational concept, this represents a shift in the way resuscitation courses are taught. Flexibility is necessary for mastery learning to occur because the time required for learners to meet this mastery standard may vary.

Assessment within AHA courses needs to play an important dual role. Summative assessment (ie, assessment conducted at the end of training that is compared with a standard or benchmark) is required to ensure that intended learning outcomes are met. Formative assessment (ie, low stakes assessment with little to no “point” value in the course) provides clarity to learners about what the important desired outcomes are and provides practical advice to learners on where they can improve and how to do it (so-called assessment for learning). Assessment is deliberately aligned to the learning objectives and instructional programs within the AHA courses. In recognizing that successful resuscitation requires the integration of cognitive, psychomotor, and behavioral skills, there is an increasing emphasis on focusing learner evaluation on the higher levels of Miller’s classic description of assessment (ie, above the level of knowledge). The simulated setting readily allows such an approach. Optimal learning depends heavily on the assessment skills of the instructor; therefore, early and ongoing faculty development is a priority, as are the development and implementation of appropriate assessment tools with evidence of validity and reliability.

The degree to which a learner masters the material depends on the instructor’s expertise and the debriefing process. Helping learners understand why the course is important (ie, the relevance) and how it applies to
their situation is critical in motivating adult learners. Respecting their prior experience and defining how their learning in the course can help them care for loved ones or their patients can be particularly useful. During debriefing, learners reflect on their performance during the simulation, performance gaps are identified and corrected, and “take-home” messages are generalized to maximize learning. Without this step, learners are unlikely to improve nontechnical skills, decision-making abilities, situational awareness, and team coordination. Future work should aim to establish competency and performance standards for resuscitation instructors that will help to standardize quality of instruction across training programs.

4 Basic Life Support Training - Updated

4.1 CPR Instruction Methods - Updated

Studies on CPR instruction methods (video- and/or computer-based with hands-on practice versus instructor-led courses) are heterogeneous with regard to instruction delivery and learner outcomes. Although instructor-led courses have been considered the gold-standard, multiple studies have demonstrated no difference in learning outcomes (cognitive performance, skill performance at course conclusion, and skill decay) when courses with self-instruction are compared with traditional instructor-led courses.

A combination of self-instruction and instructor-led teaching with hands-on training can be considered as an alternative to traditional instructor-led courses for lay providers. If instructor-led training is not available, self-directed training may be considered for lay providers learning AED skills.

Potential to increase the numbers of lay providers trained and cost implications were important considerations in the development of this recommendation.
In healthcare providers, 3 studies compared self-instruction without instructor involvement\textsuperscript{106,122,123} versus an instructor-led course and demonstrated either no difference in performance\textsuperscript{106,122} or inferior performance in the self-instruction group.\textsuperscript{123} When compared with instructor-led training alone, self-instruction combined with instructor-led AED training led to slight reductions in performance but significant reductions in training time.\textsuperscript{106,122}

\textit{Self-directed methods can be considered for healthcare professionals learning AED skills.} \hfill (Class IIb, LOE C-EO)

4.3 CPR Feedback/Prompt Devices in Training - New and Updated \hfill EIT 648

Mastery learning requires accurate assessment of CPR skills and feedback to help learners improve subsequent performance. Unfortunately, inadequate performance of CPR is common yet challenging for providers and instructors to detect,\textsuperscript{124,125} thereby making it difficult to appropriately focus feedback and improve future performance. Technology could theoretically help address this problem by assessing CPR performance and providing feedback. In conducting this analysis, we separated CPR feedback devices that provide corrective feedback to the learner from prompt devices that provide only a tone or rate for the rescuer to follow (with no feedback on how the learner is actually performing).

Learners who used devices that provided corrective feedback during CPR training had improved compression rate, depth, and recoil compared with learners performing CPR without feedback devices.\textsuperscript{94,126-146} Evidence on the effect of feedback devices on CPR skill retention is limited, with 1 of 3 studies demonstrating improved retention.\textsuperscript{132,135,136}

\textit{Use of feedback devices can be effective in improving CPR performance during training.} \hfill (Class IIa, LOE A)

Three randomized trials examined the use of auditory guidance (ie, use of a metronome or music) to guide CPR performance. All 3 studies found that compression rate was more appropriate when auditory guidance was used, although there was a negative impact on compression depth in 1 study.\textsuperscript{144-146}

\textit{If feedback devices are not available, auditory guidance (eg, metronome, music) may be considered to improve adherence to recommendations for chest compression rate only.} \hfill (Class IIb, LOE B-R)

These recommendations are made, balancing the potential benefit of improved CPR performance with the cost of the use of such devices during training.

4.4 Debriefing

Debriefing is a learner-focused, nonthreatening technique to assist individual rescuers or teams to reflect on, and improve, performance.\textsuperscript{147} In manikin-based studies, debriefing as part of the learning strategy resulted in improved performance in post-debriefing simulated scenarios,\textsuperscript{148,149,150-152} and it improved adherence to resuscitation guidelines in clinical settings.\textsuperscript{153}

\textit{Debriefing as a technique to facilitate learning should be included in all advanced life support courses.} \hfill (Class I, LOE B)

Additional research on how best to teach and implement postevent debriefing is warranted.

4.5 Retraining Intervals for BLS - Updated \hfill EIT 628

The standard retraining period for BLS is every 2 years, despite growing evidence that BLS knowledge and skills decay rapidly after initial training. Studies have demonstrated the deterioration of BLS skills in as little as 3 months after initial training.\textsuperscript{8,154,155}
Three studies evaluated the impact of 1 additional episode of BLS retraining 6 to 9 months after BLS certification and found no difference in chest compression performance or time to defibrillation.\textsuperscript{156-158} Two studies examined the effect of brief, more frequent training sessions; both studies demonstrated slight improvement in chest compression performance, and 1 study found a shorter time to defibrillation.\textsuperscript{136,159} These same studies also found that students reported improved confidence and willingness to perform CPR after additional or high-frequency training.

There is insufficient evidence to determine the optimal method and timing of BLS recertification.

\textit{Given the rapidity with which BLS skills decay after training, coupled with the observed improvement in skill and confidence among students who train more frequently, it may be reasonable for BLS retraining to be completed more often by individuals who are likely to encounter cardiac arrest.}

(\textit{Class IIb, LOE C-LD})

It should be emphasized that BLS skill maintenance needs to be appropriately tailored for potential provider groups on the basis of their setting and the feasibility of more frequent training.

5 Advanced Life Support Training - Updated

5.1 Precourse Preparation - Updated \textit{EIT 637}

To maximize learning from an ALS training program, an adult learner should be well prepared before attending such a program. Similarly, instructors have the responsibility of providing an optimal learning environment that will facilitate the acquisition and refinement of skills in motivated trainees. In view of the resources (time, equipment, supplies, money, etc) required and the potential impact (life or death) on patients, this duty is paramount. During the past decade, many life support programs have mandated independent review of content knowledge, via study of the pertinent provider manual, and successful completion of an online examination before attendance at the program. Unfortunately, trainee preparation has not been extensively studied. A single multicenter randomized controlled trial\textsuperscript{160} compared extensive precourse preparation using an interactive compact disc and additional course materials (intervention group) with the use of course materials alone (control group). Subjects exhibited no differences in performance during a simulated cardiac arrest, and no differences were noted in knowledge acquisition or performance of the technical skills required during resuscitation. Although this study revealed no benefit of trainee preparation, it is important to acknowledge that the type of skill(s) practiced during preprogram preparation and the skill(s) assessed during the program may not have been directly aligned and thus may have confounded the results. Therefore, any conclusions from this study must be tempered by its limitations. Precourse preparation is consistent with theories of learning and current practices in other professional education. It has the potential to improve learning and improve the care delivered to patients.

\textit{Precourse preparation, including review of appropriate content information, online/precourse testing, and practice of pertinent technical skills is reasonable before attending ALS training programs.}

(\textit{Class IIa, LOE C-EO})

5.2 Team and Leadership Training - Updated \textit{EIT 631}

Effective management of a cardiac arrest patient requires a team-based approach with providers who have the knowledge, clinical skills, interpersonal communication skills, and leadership skills to perform effectively in a high-stakes environment. This also requires a team leader who has the ability to provide oversight of the team, provide guidance for specific tasks, and maintain a heightened level of situational awareness to avoid fixation on certain aspects of care. Given that team-based skills are different from clinical care skills, specific team and leadership training may have a role in the effective performance of resuscitation teams and patient outcomes after cardiac arrest.

A systematic review of the resuscitation education literature identified several studies assessing the impact of team training for healthcare professionals in a cardiac arrest setting. In 1 observational study, the implementation of a hospital-wide mock code program with team training resulted in a survival increase for pediatric cardiac arrest during the study period.\textsuperscript{161}
In another observational study, the implementation of surgical team training resulted in a decrease in surgical patient mortality in hospitals that implemented the program when compared with those that did not.\textsuperscript{162}

A number of additional studies demonstrated better performance of patient tasks, teamwork, and/or leadership behaviors in the immediate postcourse time period up to 1 year after training.\textsuperscript{145-163}

\textit{Given very small risk for harm and the potential benefit of team and leadership training, the inclusion of team and leadership training as part of ALS training is reasonable. (Class IIa, LOE C-LD)}

### 5.3 Manikin Fidelity - Updated EIT 623

Many training programs use high-fidelity manikins for adult and pediatric ALS training.\textsuperscript{163-165} The use of high-fidelity manikins can encourage learners to engage physically and emotionally with the manikin and the environment, thus helping to promote teamwork, clinical decision making, and full participant immersion within the experiential learning environment. High-fidelity manikins have a wide range of functionality depending on make and model type, but generally they are defined as manikins that provide physical findings (such as heart and breath sounds, pulses, chest rise and fall, and blinking eyes), display vital signs that correlate with physical findings, and “physiologically” respond to medical intervention through an operator-controlled computer interface.\textsuperscript{164} Many of these manikins also allow participants to actually perform some critical care procedures, including bag-mask ventilation, intubation, intraosseous needle insertion, and/or chest tube insertion.\textsuperscript{163-165}

A meta-analysis of 12 randomized controlled trials showed improvement of skills at course conclusion with the use of high-fidelity manikins.\textsuperscript{91,166-176} A meta-analysis of 8 randomized controlled trials assessing knowledge at course conclusion demonstrated no significant benefit of training with high-fidelity manikins compared with low-fidelity manikins.\textsuperscript{91,167,168,175-177,178} This is supported by 1 additional nonrandomized trial demonstrating no substantial benefit of high-fidelity training on knowledge acquisition.\textsuperscript{122} With regard to skill retention, 1 study showed no benefit of high-fidelity training on skills performance (in the simulated environment) at 1 year after training.\textsuperscript{109} and another demonstrated similar results for skills performance between course conclusion and 1 year.\textsuperscript{175}

\textit{The use of high-fidelity manikins for ALS training can be beneficial for improving skills performance at course conclusion. (Class IIa, LOE B-R)}

The usefulness of high-fidelity manikins for improving knowledge at course conclusion and skills performance beyond course conclusion is uncertain. Given the increased cost associated with high-fidelity training, the use of high-fidelity manikins is particularly appropriate in programs where existing resources (ie, human and financial resources) are already in place.

### 6 Training Intervals - Updated EIT 633

Retraining intervals for AHA basic and advanced life support programs have traditionally been time-specific, with a maximum 2-year interval recommended, despite evidence that core skills and knowledge decay within 3 to 12 months after initial training.\textsuperscript{8,154} Unfortunately, the literature directly assessing the question of the retraining intervals is limited. In 1 pediatric ALS study,\textsuperscript{179} frequent refreshers with manikin-based simulation showed better clinical performance scores and equivalent behavioral performance scores, using less total time of retraining, when compared with standard retraining intervals. Recent literature in resuscitation education also demonstrates improved learning from “frequent, low-dose” versus “comprehensive, all-at-once” instruction and a learner preference for this format.\textsuperscript{180}

\textit{Given the potential educational benefits of short, frequent retraining sessions coupled with the potential for cost savings from reduced training time and removal of staff from the clinical environment for standard refresher training, it is reasonable that individuals who are likely to encounter a cardiac arrest victim perform more frequent manikin-based retraining. (Class IIa, LOE C-LD)}

There is insufficient evidence to recommend the optimum time interval.
7 Checklists/Cognitive Aids

The quality of resuscitation is a major determinant of patient outcome. Simulation studies of basic life support, advanced life support, and anesthetic emergencies demonstrated improved performance when checklists or cognitive aids were used. However, 1 simulation study demonstrated delayed completion of 2 cycles of CPR when individuals not adept at cell phone operation used a cell phone-based cognitive aid. In clinical practice, physicians perceived checklists to be useful. The impact of cognitive aids or checklists on patient outcomes is unknown.

Checklists or cognitive aids, such as the AHA algorithms, may be considered for use during actual resuscitation. (Class IIb, LOE C)

Specific checklists and cognitive aids should be evaluated to determine if they achieve the desired effect and do not result in negative consequences such as delayed response. Further research on the optimal design is warranted.

8 Special Considerations - Updated

8.1 Compression-Only CPR Training in Communities - New

Compression-only (Hands-Only™) CPR has been advocated as a method of training laypeople that is simpler to learn and may increase bystander willingness to provide CPR. Most published studies on bystander compression-only CPR have involved dispatcher-guided CPR by lay rescuers. Life support course students, when surveyed, have reported a greater willingness to provide compression-only CPR than conventional CPR with assisted ventilations. Two studies published after a state-wide educational campaign for bystander compression-only CPR showed that the prevalence of both overall bystander CPR and compression-only CPR by bystanders increased over time, but no effect on patient survival was demonstrated.

Communities may consider training bystanders in compression-only CPR for adult out-of-hospital cardiac arrest as an alternative to training in conventional CPR. (Class IIb, LOE C-LD)

Communities should consider existing bystander CPR rates and other factors, such as local epidemiology of out-of-hospital cardiac arrest and cultural preferences, when deciding on the optimal community CPR training strategy.

8.2 CPR Training in Resource-Limited Environments - New

Studies examining CPR training in resource-limited environments are heterogeneous in design and training outcomes. Studies comparing traditional course format with training using computer-based instruction, self-directed learning, video-based instruction, and varied instructor-to-student ratios showed mixed results with regard to knowledge and skill at course completion and at reassessment up to 6 months after course completion. These studies varied in course composition (paramedic students, medical students at various levels, nursing students, and credentialed healthcare providers), type of course (BLS or ALS), and instructional methods.

It may be reasonable to use alternative instructional modalities for BLS and/or ALS teaching in resource-limited environments. (Class IIb, LOE C-LD)

In making this recommendation, we considered the cost of and access to training as major impediments to training BLS and ALS for healthcare workers in resource-limited areas. Additionally, the intent is to promote research and initiatives around creative teaching strategies that lower both cost and human resources needed to achieve more widespread BLS and ALS training that meets the desired learning objectives in resource-limited environments.

8.3 CPR for High-Risk Populations - New

There are many studies evaluating the effectiveness of BLS training in family members and/or caregivers of high-risk cardiac patients, including some that measure the frequency at which CPR is performed by family members.
training primary caregivers and/or family members of high-risk patients may be reasonable, (Class IIb, LOE C-LD) although further work needs to help define which groups to preferentially target.

This recommendation is predicated on the significant potential benefit and low potential for harm in patients receiving bystander CPR by a trained family member or caregiver.

8.4 Resuscitation Training in Limited-Resource Communities

Many AHA instructors are involved in training in limited-resource environments in the United States and throughout the world. The vast majority of participants enjoy training and feel more comfortable after educational programs regardless of the type of training provided.  

Improvements in provider performance and patient outcomes following training in resource-limited environments are inconsistent, and important characteristics of students and training environment, as well as outcomes (cognitive, psychomotor skills, operational performance, patient outcome, and cost-effectiveness), are inconsistently measured. Resuscitation training, when appropriately adapted to the local providers’ clinical environment and resources, has significantly reduced mortality in developing countries. The evidence from the trauma education is most compelling, and less clear with neonatal and adult cardiac resuscitation training programs.  

Patient outcome studies were often limited by study design, but 1 large, multicenter trial failed to show improvement in neonatal survival after newborn resuscitation training.  

There is no strong evidence to support any specific instruction method as preferable for all clinical environments and training subject experience. There is anecdotal evidence that successful resuscitation training in developing countries requires local adaptation to clinical environments, utilizing existing and sustainable resources for both care and training, and a dedicated local infrastructure.

9 Knowledge Gaps - Updated

Implementing resuscitation science into clinical practice requires educational practice based on high-quality educational research. To date, the resuscitation education literature has been limited by outcomes that focus on short-term learning rather than patient outcome or transfer of provider performance into the clinical environment (or even long-term retention of critical skills), variable quality of research design, and the use of assessment tools that lack validity and reliability evidence. With that in mind, the writing group for the AHA education guidelines suggests the following general concepts to advance educational research and educational practice, along with a series of specific themes of research that warrant further exploration (Table 2).

<table>
<thead>
<tr>
<th>Specific Themes for Future Resuscitation Education Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Life Support Training</td>
</tr>
<tr>
<td>CPR instruction methods</td>
</tr>
<tr>
<td>• Determine the impact of short, video-based practice on long-term CPR performance as well as patient outcomes</td>
</tr>
<tr>
<td>• Determine the optimal design of these short courses</td>
</tr>
</tbody>
</table>

Table 2: 2015 - Specific Themes for Future Resuscitation Education Research
### AED training methods
- Define the optimal instructional strategies and retraining intervals, including the methods of retraining, to improve performance and self-efficacy

### CPR feedback/prompt devices in training
- Determine the impact of CPR feedback devices on future (long-term) performance of CPR
- Explore the additional or reduced costs of training with feedback devices

### Retraining intervals for basic life support
- Determine the ideal frequency of retraining required to enhance retention of skills and performance in simulated and real resuscitations
- Assess if real resuscitation events, coupled with appropriate feedback and/or assessment, can serve as an adjunct or replacement for more frequent retraining

### Compression-only CPR training in communities
- Define the optimal community bystander CPR training strategy based on cultural and local variables

### CPR training in resource-limited environments
- Determine the optimal method of low-cost instruction while enhancing learning and patient outcomes

### CPR for high-risk populations
- Determine which populations are best suited for targeted training, including the cost-effectiveness of this intervention

### Advanced Life Support Training

#### Precourse preparation
- Determine the content, timing, and importance of precourse preparation for various life support courses on learning outcomes

#### Team and leadership training
- Determine the optimal methodology (ie, instructional design), frequency, and context of team and leadership training for acquisition and retention of key resuscitation skills
- Define how individual leadership and team skills influence and/or relate to specific clinical performance metrics during resuscitation
<table>
<thead>
<tr>
<th>Part 14: Education</th>
<th></th>
</tr>
</thead>
</table>
| **Manikin fidelity** | • Determine the relative impact of different types of manikin fidelity (physical, emotional, conceptual) on learning, performance, and real clinical outcomes  
• Determine which aspects of manikin fidelity are important for achieving improved learning outcomes for specific objectives (e.g., technical versus cognitive versus behavioral) |
| **Training intervals** | • Determine the ideal methodology (i.e., instructional design) and frequency of retraining required to enhance retention of skills and performance in simulated and real resuscitations  
• Assess if real resuscitation events, coupled with appropriate feedback and/or assessment, can serve as an adjunct or replacement for more frequent retraining |
| **Other Topics** |  |
| **Repetitive practice/mastery learning** | • Determine how repetitive practice and mastery learning can be applied to enhance the acquisition and retention of the various critical resuscitation competencies |
| **Briefing/debriefing** | • Determine how the various aspects of briefing (e.g., content, duration) influence learning outcomes from simulation-based resuscitation education  
• Determine how various aspects of debriefing (e.g., duration, method, framework, facilitator, use of video) can be tailored to improve the quality of simulation-based resuscitation education |
| **Data-informed feedback** | • Determine the value of data-informed feedback (e.g., quantitative CPR data, video review) during advanced life support courses |
| **Blended learning** | • Determine how different learning methods and models (e.g., screen-based learning, mastery learning, high-fidelity simulation) can be blended to enhance learning and patient outcomes |
| **Instructor training and competencies** | • Determine the key instructor competencies that influence positive learning outcomes  
• Determine the optimal means of coaching, training, and assessing instructors |
9.1 General Concepts - Updated

Research on resuscitation education needs higher-quality studies that are adequately powered and that address important educational questions. Multicenter collaborative studies may be of benefit to support both quality in study design and enrolling adequate numbers of participants. Ideally, the outcomes from educational studies should focus on patient outcomes (where feasible), transfer of learning into performance in the clinical environment, or at least long-term retention of psychomotor and behavioral skills in the simulated resuscitation environment. Too much of the current focus of educational research is exclusively on the immediate end-of-course performance, which may not be representative of participants’ performance when they are faced with a resuscitation event months to years later. Because much of the training for resuscitation events uses manikin-based simulation, research is needed to reflect important patient characteristics in training devices, such as chest compliance and clinical signs of distress. Assessment tools that have been empirically studied for evidence of validity and reliability are foundational to high-quality research. Standardizing the use of such tools across studies could potentially allow for meaningful comparisons when evidence is synthesized in systematic reviews to more precisely determine the impact of certain interventions. Finally, there is a clear need for cost-effectiveness research because many of the AHA education guidelines are developed in the absence of this information.

10 Authorship and Disclosures

10.1 2015 Writing Team

Farhan Bhanji, Chair; Aaron J. Donoghue; Margaret S. Wolff; Gustavo E. Flores; Louis P. Halamek; Jeffrey M. Berman; Elizabeth H. Sinz; Adam Cheng

Table 3: Part 14: Education: 2015 Guidelines Update Writing Group Disclosures

Open table in a new window
This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition. *Modest. †Significant.

### 10.2 2010 Writing Team

Farhan Bhanji, Chair; Mary E. Mancini; Elizabeth Sinz; David L. Rodgers; Mary Ann McNeil; Theresa A. Hoadley; Reynol A. Meeks; Melinda Fiedor Hamilton; Peter A. Meaney; Elizabeth A. Hunt; Vinay M. Nadkarni; Mary Fran Hazinski

#### Table 4: 2010 - Guidelines Part 16: Education Implementation and Teams Writing Group Disclosures

Open table in a new window
<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Ownership/Consultant/Advisor Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farhan Bhanji</td>
<td>Montreal Children’s Hospital, McGill University—Assistant Professor of Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary E. Mancini</td>
<td>University of Texas at Arlington—Professor</td>
<td>None</td>
<td>None</td>
<td>'In the past two years have received honoraria from Datascope for presentations at two national teaching institutes for the American Association of Critical Care Nurses and Emergency Nursing Association—Topic = Improving The Chain of Survival.'</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Elizabeth Sinz</td>
<td>Penn State Hershey Medical Center—Professor of Anesthesiology and Neurosurgery; American Heart Association; Associate Science Editor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Writing Group Member</td>
<td>Employment</td>
<td>Research Grant</td>
<td>Other Research Support</td>
<td>Speakers’ Bureau/Honoraria</td>
<td>Ownership Interest</td>
<td>Consultant/Advisory Board</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>David L. Rodgers</td>
<td>Clinical Educator, the Center for Simulation, Advanced Education and Innovation, Children’s Hospital of Philadelphia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Ann McNeil</td>
<td>University of Minnesota Medical school-Director, Department of Emergency Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Theresa A. Hoadley</td>
<td>OSF St Francis College of Nursing; Assist. Professor; Proctor Hosp-TC coordinator</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Reylon A. Meeks</td>
<td>Blank Children’s Hosp./Pleasant Hill FD/Southwest CC, DMACC</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Melinda Fiedor Hamilton</td>
<td>Children’s Hospital of Pittsburgh of UPMC–Assistant Professor of CCM and Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Writing Group Member</td>
<td>Employment</td>
<td>Research Grant</td>
<td>Other Research Support</td>
<td>Speakers’ Bureau/Honoraria</td>
<td>Ownership</td>
<td>Consultant/Advisor</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Peter A. Meaney</td>
<td>University of Pennsylvania, Children's Hospital of Philadelphia–Assistant Professor</td>
<td>“Laerdal Foundation, Research grant “Development and Validation of a Quantitative Measurement Device to Assess Technical Basic Life Support Skills in Resource Limited Settings.” No direct support to investigator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“Laerdal Corporation, Research equipment (study manikins) for “Development and Validation of a Quantitative Measurement Device to Assess Technical Basic Life Support Skills in Resource Limited Settings.” No direct support to investigator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elizabeth A. Hunt</td>
<td>Johns Hopkins University School of Medicine–Director, Johns Hopkins Medicine Simulation Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Writing Group Member</td>
<td>Employment</td>
<td>Research Grant</td>
<td>Other Research Support</td>
<td>Speakers’ Bureau/Honoraria</td>
<td>Ownership Interest</td>
<td>Consultant/Advisor Board</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Vinay M. Nadkarni</td>
<td>University of Pennsylvania School of Medicine, Children’s Hospital of Philadelphia—Attending Physician, Anesthesia, Critical Care and Pediatrics</td>
<td>†AHRQ: Agency for Healthcare, Research and Quality: PI, Grant for Evaluation of Safety of Pediatric Tracheal Intubation and Just in Time Simulation Education Intervention</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Fran Hazinski</td>
<td>Vanderbilt Univ. School of Nursing—Professor; AHA ECC Product Development—Senior Science Editor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

- **2** Modest.
- **2†** Significant.

11 Footnotes
The American Heart Association requests that this document be cited as follows:


© Copyright 2015 American Heart Association, Inc.

References


Part 14: Education


Part 14: Education


Part 14: Education


209. Dracup K, Moser DK, Guzy PM, Taylor SE, Marsden C. Is cardiopul- monary resuscitation training deleterious for family members of cardiac patients? Am J Public Health. 1994;84:116–118.


